
CS 677: Distributed OS Lec. 05

Concurrency in Distributed Systems

• Part 1: Threads

• Part 2: Concurrency Models

• Part 3: Thread Scheduling

1

1

CS 677: Distributed OS Lec. 05

Part 1: Threads and Concurrency
• Traditional process

– One thread of control through a large, potentially sparse address space

– Address space may be shared with other processes (shared mem)

– Collection of systems resources (files, semaphores)

• Thread (light weight process)

– A flow of control through an address space

– Each address space can have multiple concurrent control flows

– Each thread has access to entire address space

– Potentially parallel execution, minimal state (low overheads)

– May need synchronization to control access to shared variables

2

2

CS 677: Distributed OS Lec. 05

Threads
• Each thread has its own stack, PC, registers

– Share address space, files,…

3

3

CS 677: Distributed OS Lec. 05

Why use Threads?

• Large multiprocessors/multi-core systems need many computing entities (one
per CPU or core)

• Switching between processes incurs high overhead

• With threads, an application can avoid per-process overheads

– Thread creation, deletion, switching cheaper than processes

• Threads have full access to address space (easy sharing)

• Threads can execute in parallel on multiprocessors

4

4

CS 677: Distributed OS Lec. 05

Threads Example

5

Single threaded program

5

CS 677: Distributed OS Lec. 05

Threads Example

6

Multi-threaded version

https://www.pythontutorial.net/advanced-python/

python-threading/

6

https://www.pythontutorial.net/advanced-python/

CS 677: Distributed OS Lec. 05

Why Threads?
• Single threaded process: blocking system calls, no concurrency/parallelism

• Finite-state machine [event-based]: non-blocking with concurrency

• Multi-threaded process: blocking system calls with parallelism

• Threads retain the idea of sequential processes with blocking system calls, and yet
achieve parallelism

• Software engineering perspective

– Applications are easier to structure as a collection of threads

• Each thread performs several [mostly independent] tasks

7

7

CS 677: Distributed OS Lec. 05

Multi-threaded Clients Example : Web Browsers
• Browsers such as IE are multi-threaded

• Such browsers can display data before entire document is downloaded: performs multiple
simultaneous tasks

– Fetch main HTML page, activate separate threads for other parts

– Each thread sets up a separate connection with the server

• Uses blocking calls

– Each part (gif image) fetched separately and in parallel

– Advantage: connections can be setup to different sources

• Ad server, image server, web server…

8

8

CS 677: Distributed OS Lec. 05

Multi-threaded Server Example
• Apache web server: pool of pre-spawned worker threads

– Dispatcher thread waits for requests (“dispatcher-workers” architecture)

– For each request, choose an idle worker thread

– Worker thread uses blocking system calls to service web request

9

9

CS 677: Distributed OS Lec. 05

Part 2: Concurrency Models

• Concurrency for server-side applications

• All server-side applications involve using a loop to process incoming requests

10

while(1) {
 wait for incoming request;
 process incoming request;
}

called

event loop

10

CS 677: Distributed OS Lec. 05

Sequential Server
• Simplest model: single process, single thread

• Process incoming requests sequentially

• Advantage: very simple

• Disadvantages:

• Requests queue up while one request is being processed

• Increases waiting time (queuing delay) and response time

11

11

CS 677: Distributed OS Lec. 05

Multi-threaded Server
• Use threads for concurrent processing

• Simple model: thread per request

• For each new request: start new thread, process request, kill thread

• Advantage: Newly arriving requests don’t need to wait

• Assigned to a thread for concurrent processing

• Disadvantage: frequent creation and deletion of threads

12

while(1){
 req = waitForRequest();// get next request in queue

 // wait until one arrives
 thread = createThread(); // start a new thread

 thread.process(req); // assign request to thread
}

12

CS 677: Distributed OS Lec. 05

Server with Thread Pool
• Use Thread Pool

• Pre-spawn a pool of threads

• One thread is dispatcher, others are worker threads

• For each incoming request, find an idle worker thread and assign

• Advantage: Avoids thread creation overhead for each request

• Disadvantages:

• What happens when >N requests arrive at the same time?

• How to choose the correct pool size N?

13

CreateThreadPool(N);
while(1){

 req = waitForRequest();
 thread = getIdleThreadfromPool();

thread.process(req)
 }

13

CS 677: Distributed OS Lec. 05

Dynamic Thread Pools
• Optimal size of thread pool depends on request rate

• Online services see dynamic workload

• Request rate of a web server varies over time
• Dynamic thread pool: vary the number of threads in pool based on workload

• Start with N threads and monitor number of idle threads

• If # of idle threads < low threshold, start new threads and add to pool

• If # < idle threads > high threshold, terminate some threads
• Many modern servers (e.g., apache) use dynamic thread pools to handle variable workloads

• IT Admin need not worry about choosing optimal N for thread pool

14

14

CS 677: Distributed OS Lec. 05

Async Event Loop Model
• Async Event loop servers: single thread but need to process multiple requests

• Use non-blocking (asynchronous) calls

• Asynchronous (aka, event-based) programming

• Provide concurrency similar to synchronous multi-threading but with single thread

15

Async version Synchronous version

15

CS 677: Distributed OS Lec. 05

Event Loop Model
• https://python.readthedocs.io/en/stable/library/asyncio-eventloop.html

• async function in python: “coroutine”

• await/async pair

• https://python.plainenglish.io/build-your-own-event-loop-from-scratch-in-python-da77ef1e3c39

• https://docs.python.org/3.9/library/asyncio-task.html

16

async def foo():
await bar()

await: suspend execution of foo
and wait for bar

16

https://python.readthedocs.io/en/stable/library/asyncio-eventloop.html
https://python.plainenglish.io/build-your-own-event-loop-from-scratch-in-python-da77ef1e3c39

CS 677: Distributed OS Lec. 05

Process Pool Servers
• Multi-process server

• Use a separate process to handle each request

• Process Pool: dispatcher process and worker processes

• Assign each incoming request to an idle process
• Apache web server supports process pools
• Dynamic Process Pools: vary pool size based on workload
• Advantages

• Worker process crashes only impact the request, not application

• Address space isolation across workers
• Disadvantages

• Process switching is more heavy weight than thread switching

17

17

CS 677: Distributed OS Lec. 05

Server Architecture
• Sequential

– Serve one request at a time

– Can service multiple requests by employing events and asynchronous communication

• Concurrent

– Server spawns a process or thread to service each request

– Can also use a pre-spawned pool of threads/processes (apache)

• Thus servers could be

– Pure-sequential, event-based, thread-based, process-based

• Discussion: which architecture is most efficient?

18

18

CS 677: Distributed OS Lec. 05

Parallelism versus Concurrency
• Concurrency enables handling of multiple requests

• Request processing does not block other requests

• Achieved using threads or async (non-blocking) calls

• Concurrency can be achieved on single core/processor

• Parallelism enable simultaneous processing of requests

• Does not block other requests; requests processed in parallel

• Needs multiple threads or multiple processes

• Threads/processes simultaneously run on multiple cores

• Async event loops? Will need multiple threads

19

19

CS 677: Distributed OS Lec. 05

Part 3: Thread Scheduling
• Key issues:

• Cost of thread management

– More efficient in user space

• Ease of scheduling

• Flexibility: many parallel programming models and schedulers

• Process blocking – a potential problem

20

20

CS 677: Distributed OS Lec. 05

User-level Threads
• Threads managed by a threads library

– Kernel is unaware of presence of threads

• Advantages:

– No kernel modifications needed to support threads

– Efficient: creation/deletion/switches don’t need system calls

– Flexibility in scheduling: library can use different scheduling algorithms, can be application dependent

• Disadvantages

– Need to avoid blocking system calls [all threads block]

– Threads compete for one another

– Does not take advantage of multiprocessors [no real parallelism]

21

21

CS 677: Distributed OS Lec. 05

User-level threads

22

22

CS 677: Distributed OS Lec. 05

Kernel-level threads
• Kernel aware of the presence of threads

– Better scheduling decisions, more expensive

– Better for multiprocessors, more overheads for uniprocessors

23

23

CS 677: Distributed OS Lec. 05

Thread Scheduling Example
• CPU scheduler uses round-robin time slices

24

foo() bar()program

single threaded process
time-sliced schedulersequential

multi-threaded process
time-sliced scheduler

concurrent

I/O I/O I/O I/Osequential
with I/O

single threaded process
time-sliced scheduler

I/O I/O I/O I/O

concurrent
with I/O

disk or network I/O
(does not block CPU)

multi-threaded process
time-sliced scheduler

I/O

I/O

I/O

I/O
parallel
with I/O multi-threaded process

time-sliced scheduler on 2 cores

24

CS 677: Distributed OS Lec. 05

Scheduler Activation
• User-level threads: scheduling both at user and kernel levels

• user thread system call: process blocks

• kernel may context switch thread during important tasks
• Need mechanism for passing information back and forth
• Scheduler activation: OS mechanism for user level threads

• Notifies user-level library of kernel events

• Provides data structures for saving thread context
• Kernel makes up-calls : CPU available, I/O is done etc.
• Library informs kernel: create/delete threads

• N:M mapping: n user-level threads onto M kernel entities
• Performance of user-level threads with behavior of kernel threads

25

25

CS 677: Distributed OS Lec. 05

Light-weight Processes
• Several LWPs per heavy-weight process

• User-level threads package

– Create/destroy threads and synchronization primitives

• Multithreaded applications – create multiple threads, assign threads to LWPs (one-
one, many-one, many-many)

• Each LWP, when scheduled, searches for a runnable thread [two-level scheduling]

– Shared thread table: no kernel support needed

• When a LWP thread block on system call, switch to kernel mode and OS context
switches to another LWP

26

26

CS 677: Distributed OS Lec. 05

LWP Example

27

27

CS 677: Distributed OS Lec. 05

Process Scheduling
• Priority queues: multiples queues, each with a different priority

– Use strict priority scheduling

– Example: page swapper, kernel tasks, real-time tasks, user tasks

• Multi-level feedback queue

– Multiple queues with priority

– Processes dynamically move from one queue to another

• Depending on priority/CPU characteristics

– Gives higher priority to I/O bound or interactive tasks

– Lower priority to CPU bound tasks

– Round robin at each level

28

28

